Loop Invariants and Binary Search

Learning Outcomes

From this lecture, you should be able to:
☐ Use the loop invariant method to think about iterative algorithms.
☐ Prove that the loop invariant is established.
☐ Prove that the loop invariant is maintained in the 'typical' case.
Prove that the loop invariant is maintained at all boundary conditions.
☐ Prove that progress is made in the 'typical' case
Prove that progress is guaranteed even near termination, so that the exit condition is always reached.
Prove that the loop invariant, when combined with the exit condition, produces the post-condition.
☐ Trade off efficiency for clear, correct code.

Outline

- ➤ Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study

Outline

- > Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study

Assertions

- An assertion is a statement about the state of the data at a specified point in your algorithm.
- An assertion is not a task for the algorithm to perform.
- You may think of it as a comment that is added for the benefit of the reader.

Loop Invariants

- Binary search can be implemented as an iterative algorithm (it could also be done recursively).
- ➤ Loop Invariant: An assertion about the current state useful for designing, analyzing and proving the correctness of iterative algorithms.

Other Examples of Assertions

- Preconditions: Any assumptions that must be true about the input instance.
- Postconditions: The statement of what must be true when the algorithm/program returns.
- Exit condition: The statement of what must be true to exit a loop.

Iterative Algorithms

Take one step at a time towards the final destination

loop

take step

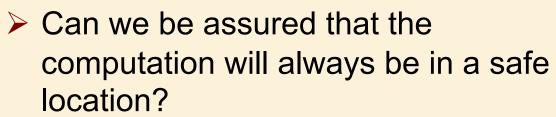
end loop

Establishing Loop Invariant

From the Pre-Conditions on the input instance we must establish the loop invariant.

Maintain Loop Invariant

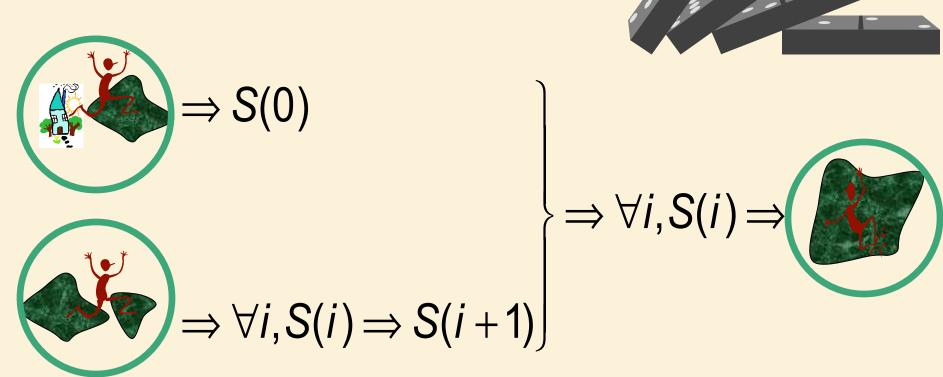
- ☐ We start in a safe location (pre-condition)
- ☐ If we are in a safe location, we always step to another safe location (loop invariant)



By what principle?

Maintain Loop Invariant

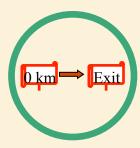
• By <u>Induction</u> the computation will always be in a safe location.



Ending The Algorithm

Define Exit Condition

Termination: With sufficient progress, the exit condition will be met.



- When we exit, we know
 - exit condition is true
 - □ loop invariant is true from these we must establish the post conditions.

Definition of Correctness

<PreCond> & <code> -> <PostCond>

If the input meets the preconditions, then the output must meet the postconditions.

If the input does not meet the preconditions, then nothing is required.

End of Lecture

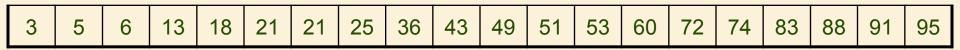
MAR 12, 2015

Outline

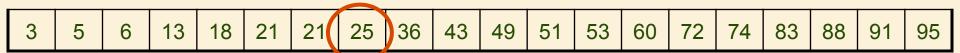
- Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study

Define Problem: Binary Search

- PreConditions
 - □ Key 25
 - ☐ Sorted List



- PostConditions
 - ☐ Find key in list (if there).



Define Loop Invariant

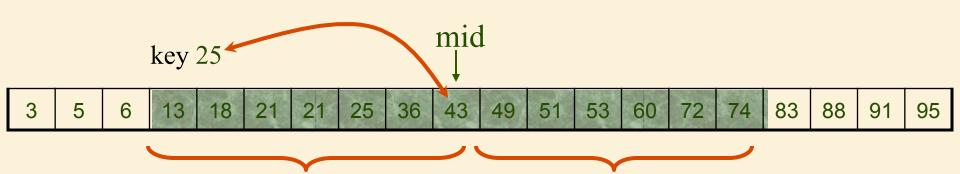
- Maintain a sublist.
- ➤ If the key is contained in the original list, then the key is contained in the sublist.

key 25

				_															
3	5	6	13	18	21	21	25	36	43	49	51	53	60	72	74	83	88	91	95

Define Step

- Cut sublist in half.
- Determine which half the key would be in.
- Keep that half.



If key \leq mid, then key is in left half.

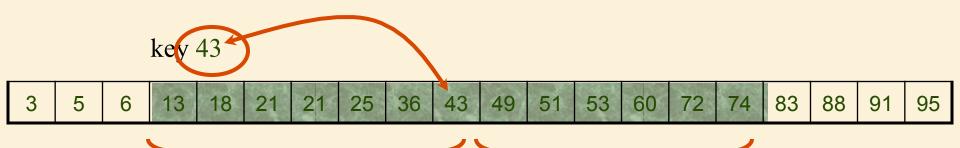
If key > mid, then key is in right half.

YORK
UNIVERSITE
Prof. J. Elder

Define Step

- > It is faster not to check if the middle element is the key.
- Simply continue.

EECS 2011

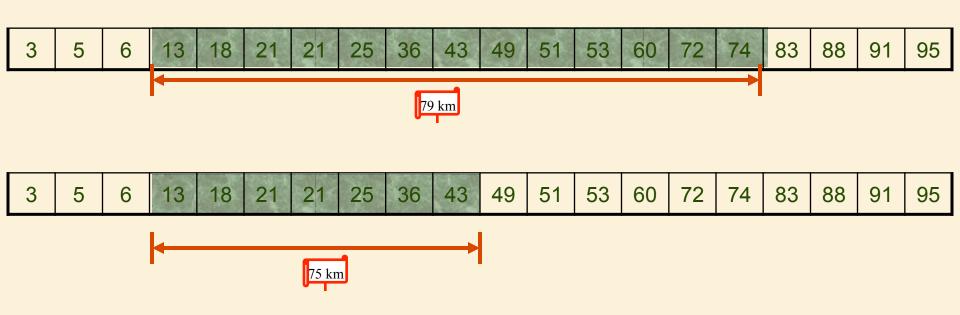


If key \leq mid, then key is in left half.

If key > mid, then key is in right half.

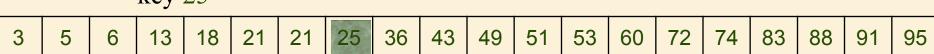
Make Progress

> The size of the list becomes smaller.



Exit Condition

key 25



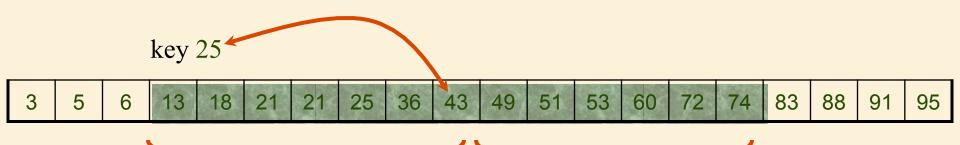
- If the key is contained in the original list,
 - then the key is contained in the sublist.
- Sublist contains one element.

- If element = key, return associated entry.
 - Otherwise return false.

Running Time

The sublist is of size n, $^{n}/_{2}$, $^{n}/_{4}$, $^{n}/_{8}$,...,1 Each step O(1) time.

Total = $O(\log n)$



If key \leq mid, then key is in left half.

If key > mid, then key is in right half.

EECS 2011 Prof. J. Elder

Running Time

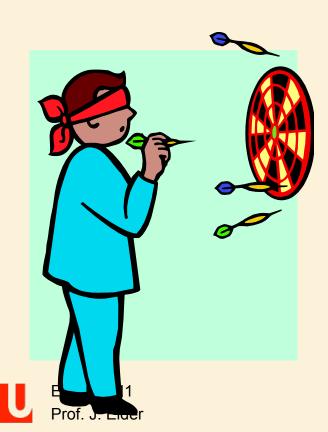
- ➤ Binary search can interact poorly with the memory hierarchy (i.e. <u>caching</u>), because of its random-access nature.
- ➤ It is common to abandon binary searching for linear searching as soon as the size of the remaining span falls below a small value such as 8 or 16 or even more in recent computers.


```
BinarySearch(A[1..n], key)
condition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p = 1, q = n
while q > p
   < loop-invariant>: If key is in A[1..n], then key is in A[p..q]
   mid = \left| \frac{p+q}{2} \right|
   if key \leq A[mid]
       q = mid
   else
       p = mid + 1
   end
end
if key = A[p]
   return(p)
else
   return("Key not in list")
end
```


Simple, right?

- 25 -

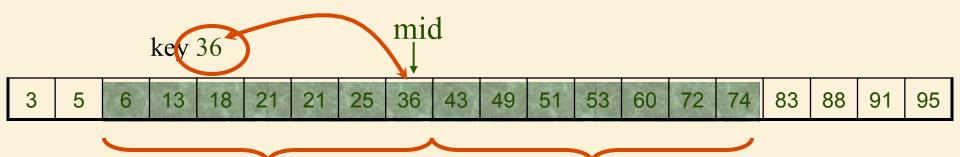
- Although the concept is simple, binary search is notoriously easy to get wrong.
- Why is this?



- The basic idea behind binary search is easy to grasp.
- It is then easy to write pseudocode that works for a 'typical' case.
- ➤ Unfortunately, it is equally easy to write pseudocode that fails on the *boundary conditions*.


```
if key \le A[mid]
q = mid
else
p = mid + 1
end
or
p = mid + 1
p = mid + 1
```

What condition will break the loop invariant?



Code: key ≥ A[mid] → select right half

Bug!!


```
if key \le A[mid]
q = mid
else
p = mid + 1
end
```

if
$$key < A[mid]$$

$$q = mid - 1$$
else
$$p = mid$$
end

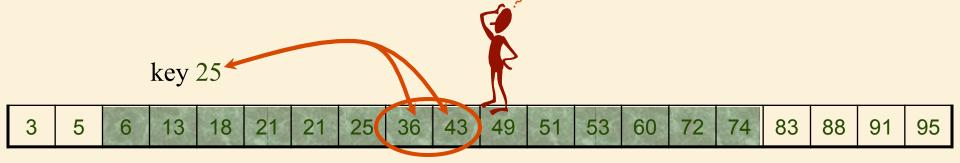
If key < A[m/d] q = midelse p = mid + 1end

OK

OK

Not OK!!

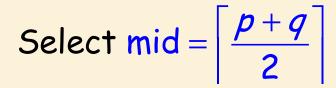
$$\operatorname{mid} = \left\lfloor \frac{p+q}{2} \right\rfloor \qquad \text{or} \qquad \operatorname{mid} = \left\lceil \frac{p+q}{2} \right\rceil$$



Shouldn't matter, right?

Select mid =
$$\left\lceil \frac{p+q}{2} \right\rceil$$

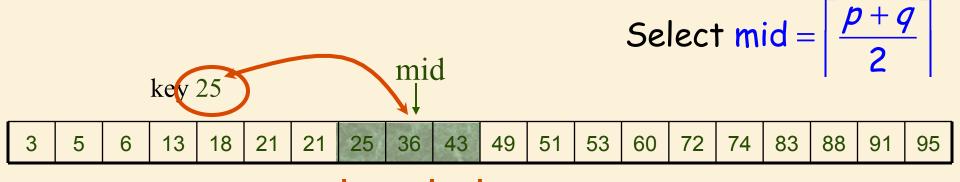

```
if key \le A[mid]
q = mid
else
p = mid + 1
end
```



> If key \leq mid, then key is in left half.

If key > mid, then key is in right half.


```
if key \le A[mid]
q = mid
else
p = mid + 1
end
```



If key \leq mid, then key is in left half.

If key > mid, then key is in right half.

YORK
UNIVERSITE
Prof. J. Elder

- 32 -

if
$$key \le A[mid]$$
 $q = mid$
else
 $p = mid + 1$
end
toward goal:

Loops Forever!

Select mid = $\frac{p+q}{2}$
 $\frac{p+q}{2}$

3 5 6 13 18 21 21 25 36 43 49 51 53 60 72 74 83 88 91 95

If key \leq mid, then key is in left half.

If key > mid, then key is in right half.

YORK
UNIVERSITE
Prof. J. Elder

- 33 -

$$mid = \left\lfloor \frac{p+q}{2} \right\rfloor$$
if $key \le A[mid]$

$$q = mid$$
else
$$p = mid + 1$$
end

$$mid = \left\lceil \frac{p+q}{2} \right\rceil$$
if $key < A[mid]$

$$q = mid - 1$$
else
$$p = mid$$
end

$$mid = \left\lceil \frac{p+q}{2} \right\rceil$$
if $xey \le A[mid]$

$$q = mid$$
else
$$p = mid + 1$$
end

Not OK!!

Getting it Right

- How many possible algorithms?
- How many correct algorithms?
- Probability of guessing correctly?

Alternative Algorithm: Less Efficient but More Clear

```
BinarySearch(A[1..n], key)
condition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p = 1, q = n
while q \ge p
   < loop-invariant>: If key is in A[1..n], then key is in A[p..q]
   mid = \frac{p+q}{2}
   if key < A[mid]
      q = mid - 1
   else if key > A[mid]
       p = mid + 1
   else
                                    Still \Theta(\log n), but with slightly larger constant.
       return(mid)
   end
end
return("Key not in list")
```


- e = kthSmallestOfUnion(k)
 - □ e.g., kthSmallestOfUnion(6) = 7
- Observation: e must be in first k positions of A1 or A2, i.e.,

$$e \in A_1[0...k-1] \cup A_2[0...k-1]$$

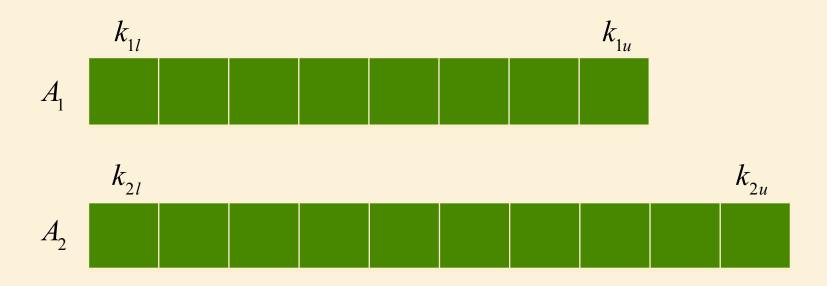
➤ Step 1: Truncate A1 and A2 to length k.

- e = kthSmallestOfUnion(k)
 - □ e.g., kthSmallestOfUnion(6) = 7
- Step 2: Divide and Conquer!
 - □ Case 1: A1[2] > A2[2]. In what intervals must the kth smallest lie?
 - □ Case 2: A1[2] < A2[2]. In what intervals must the kth smallest lie?

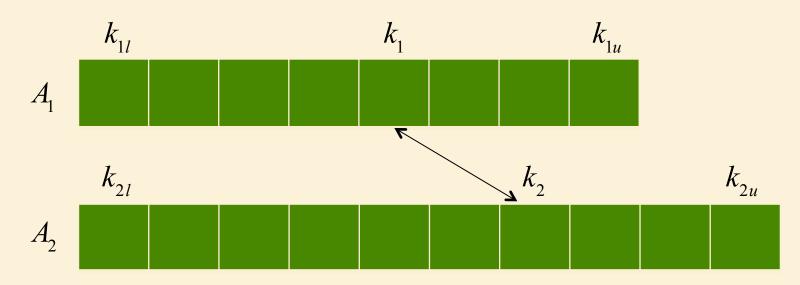


More generally: maintain the loop invariant that the kth smallest key is stored in

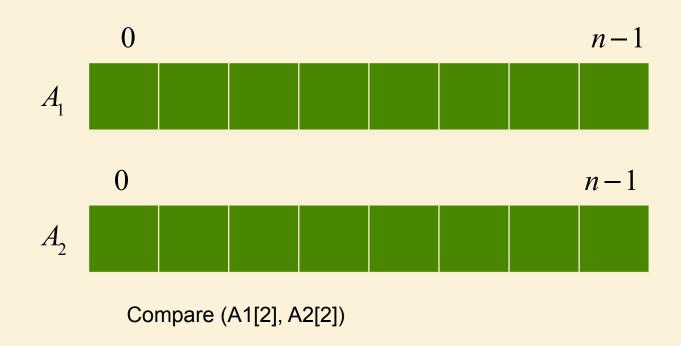
$$A_{1}\left[k_{1l}...k_{1u}\right] \cup A_{2}\left[k_{2l}...k_{2u}\right]$$



- Now bisect A₁: $k_1 = \left| (k_{1l} + k_{1u}) / 2 \right|$ and define $k_2 = k k_1 1$.
- ightharpoonup Note that $k_1 + k_2 = k 1$
- ightharpoonup Now compare $A_1 [k_1]$ and $A_2 [k_2]$.
- What sub-intervals can you safely rule out?
- Now update $k_{1l}, k_{1u}, k_{2l}, k_{2u}$ accordingly, and iterate!



- ➤ To simplify the problem, assume that original input arrays are of the same length.
- Note that k < 2n, or a RankOutOfRangeException is thrown.</p>



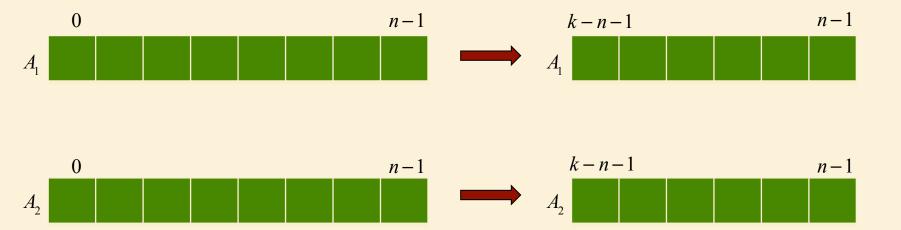
- \triangleright What if k < n?
- Then we first truncate both arrays to be of length k.



- \triangleright What if k > n?
- Then we first trim the tails of the arrays so they are of length k.

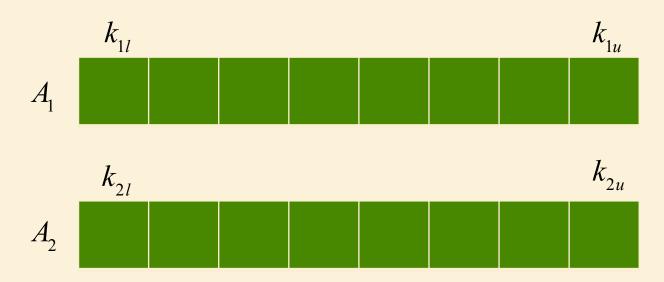


- \triangleright What if k > n + 1?
- Then we first trim the beginning of both arrays so they are of length n (k n 1) + 1 = 2n k + 1.

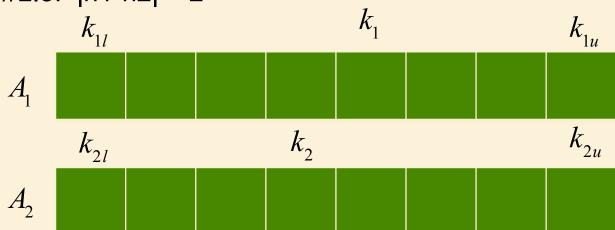


Thus at the beginning of the loop, we have the kth smallest element in

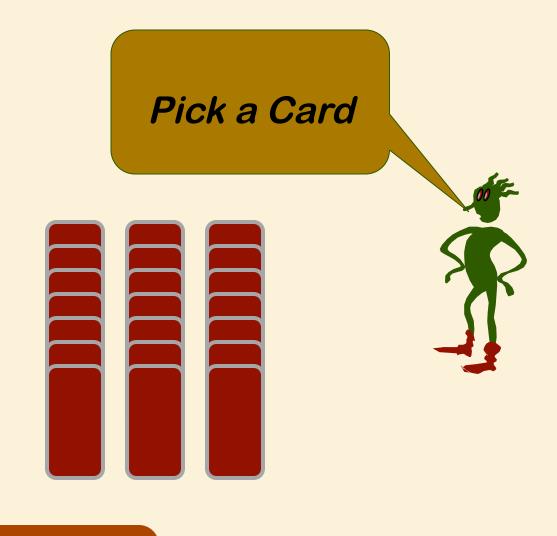
$$A_{1}\left[k_{1l}\ldots k_{1u}\right] \bigcup A_{2}\left[k_{2l}\ldots k_{2u}\right]$$

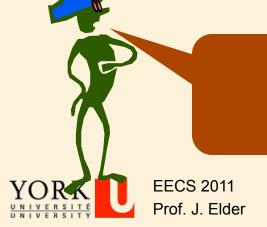


- Now let $k_1 = \lceil (k_{1l} + k_{1u})/2 \rceil$ and $k_2 = \lfloor (k_{2l} + k_{2u})/2 \rfloor$
- \triangleright Then we have that $k_1 + k_2 = k 1$.
- In the loop we will compare $A_1[k_1]$ and $A_2[k_2]$, and update, while preserving 3 loop invariants:
- //LI1: kth smallest is in A1[k1l...k1u] or A2[k2l...k2u]
- \rightarrow //LI2: k1 + k2 = k-1
- //LI3: |n1-n2| < 2



Card Trick



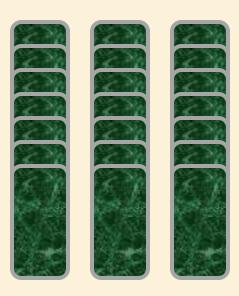


Thanks to J. Edmonds for this example.

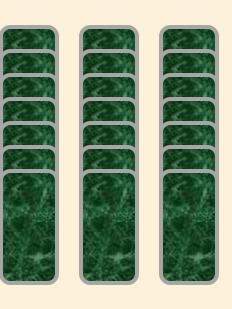
Last Updated: 24 March 2015

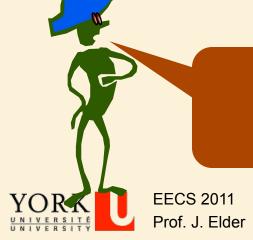
Done

Loop Invariant: The selected card is one of these.



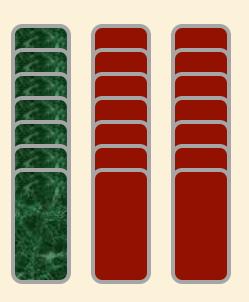
Which column?



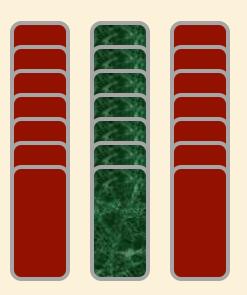


left

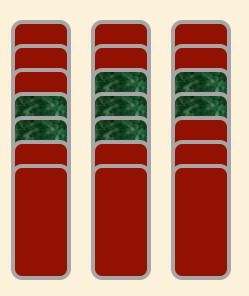
Loop Invariant: The selected card is one of these.



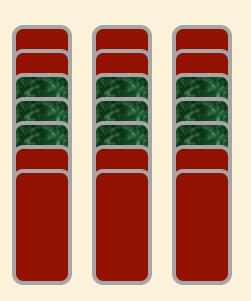
Selected column is placed in the middle

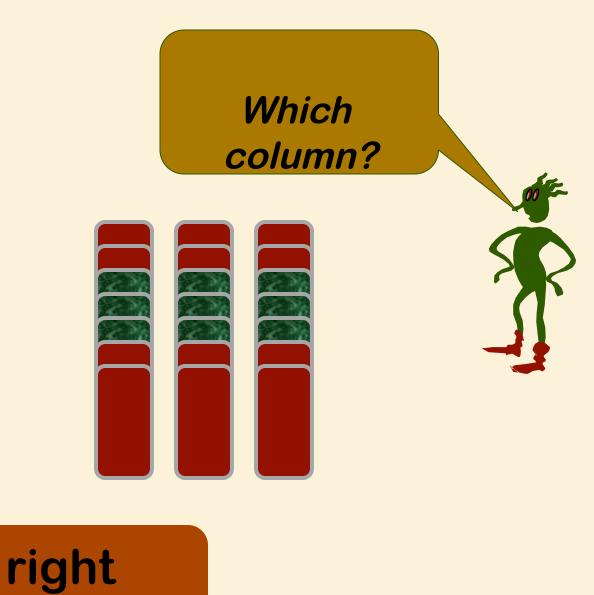


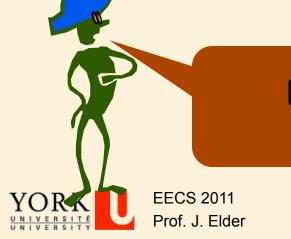
I will rearrange the cards



Relax Loop Invariant: I will remember the same about each column.

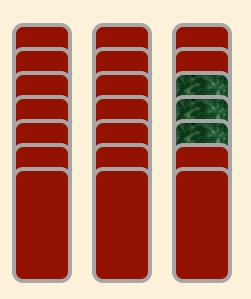




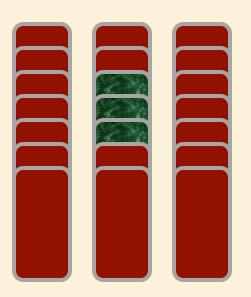


- 55 -

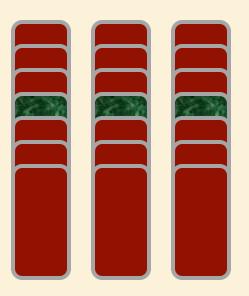
Loop Invariant: The selected card is one of these.

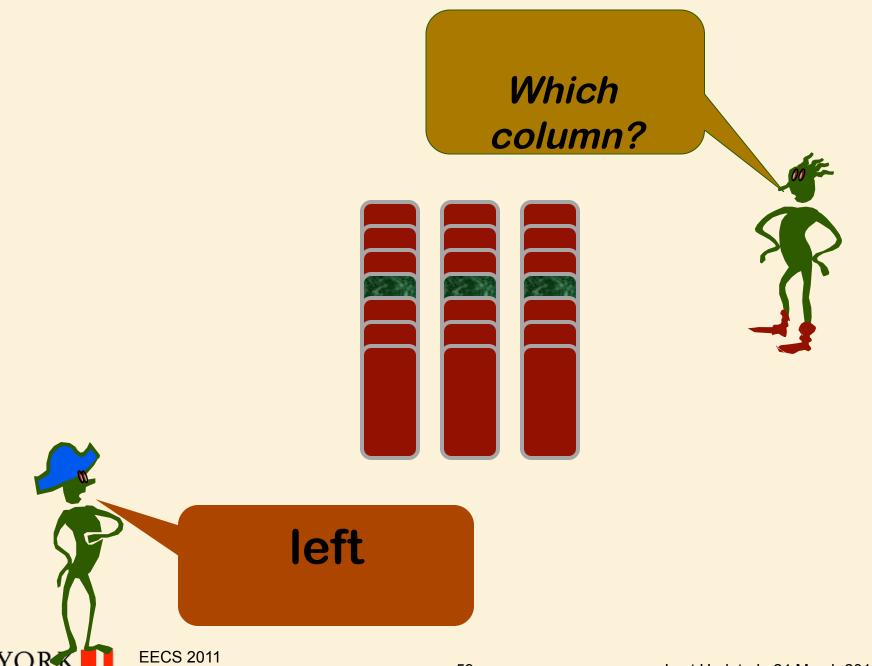


Selected column is placed in the middle



I will rearrange the cards

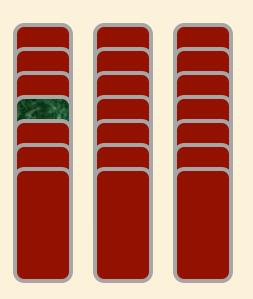




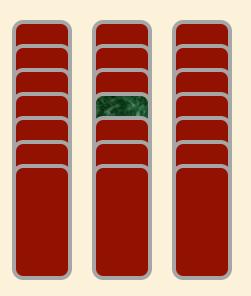
Last Updated: 24 March 2015

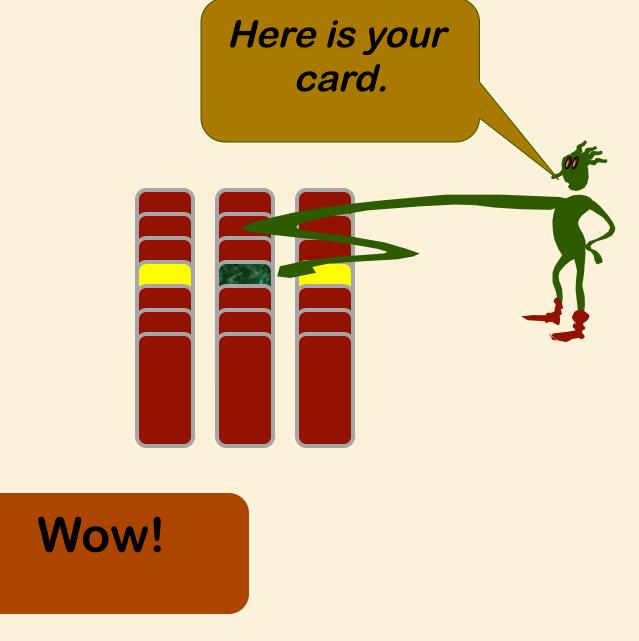
Prof. J. Elder

Loop Invariant: The selected card is one of these.



Selected column is placed in the middle





EECS 2011 Prof. J. Elder

Ternary Search

Loop Invariant: selected card in central subset of cards

Size of subset =
$$\lceil n/3^{i-1} \rceil$$
 where

n = total number of cards

i = iteration index

> How many iterations are required to guarantee success?

Outline

- ➤ Iterative Algorithms, Assertions and Proofs of Correctness
- Binary Search: A Case Study

Learning Outcomes

From this lecture, you should be able to:
☐ Use the loop invariant method to think about iterative algorithms.
☐ Prove that the loop invariant is established.
☐ Prove that the loop invariant is maintained in the 'typical' case.
Prove that the loop invariant is maintained at all boundary conditions.
☐ Prove that progress is made in the 'typical' case
☐ Prove that progress is guaranteed even near termination, so that the exit condition is always reached.
Prove that the loop invariant, when combined with the exit condition, produces the post-condition.
☐ Trade off efficiency for clear, correct code.

