Loop Invariants and Binary Search

Learning Outcomes

> From this lecture, you should be able to:
\square Use the loop invariant method to think about iterative algorithms.
\square Prove that the loop invariant is established.
\square Prove that the loop invariant is maintained in the 'typical' case.
\square Prove that the loop invariant is maintained at all boundary conditions.
\square Prove that progress is made in the 'typical' case
\square Prove that progress is guaranteed even near termination, so that the exit condition is always reached.
\square Prove that the loop invariant, when combined with the exit condition, produces the post-condition.
\square Trade off efficiency for clear, correct code.

Outline

> Iterative Algorithms, Assertions and Proofs of Correctness
> Binary Search: A Case Study

Outline

$>$ Iterative Algorithms, Assertions and Proofs of Correctness
> Binary Search: A Case Study

Assertions

\Rightarrow An assertion is a statement about the state of the data at a specified point in your algorithm.
$>$ An assertion is not a task for the algorithm to perform.
$>$ You may think of it as a comment that is added for the benefit of the reader.

Loop Invariants

$>$ Binary search can be implemented as an iterative algorithm (it could also be done recursively).
> Loop Invariant: An assertion about the current state useful for designing, analyzing and proving the correctness of iterative algorithms.

Other Examples of Assertions

> Preconditions: Any assumptions that must be true about the input instance.
> Postconditions: The statement of what must be true when the algorithm/program returns.
> Exit condition: The statement of what must be true to exit a loop.

Iterative Algorithms

Take one step at a time towards the final destination

loop
take step
end loop

Establishing Loop Invariant

From the Pre-Conditions on the input instance we must establish the loop invariant.

Maintain Loop Invariant

$>$ Suppose that
\square We start in a safe location (pre-condition)
\square If we are in a safe location, we always step to another safe location (loop invariant)
> Can we be assured that the computation will always be in a safe location?
> By what principle?

Maintain Loop Invariant

- By Induction the computation will always be in a safe location.

Ending The Algorithm

> Define Exit Condition
Exit
> Termination: With sufficient progress, the exit condition will be met.
> When we exit, we know
\square exit condition is true

- loop invariant is true
from these we must establish the post conditions.

Definition of Correctness

<PreCond> \& <code> \rightarrow <PostCond>

If the input meets the preconditions,
then the output must meet the postconditions.

If the input does not meet the preconditions, then nothing is required.

End of Lecture

MAR 12, 2015

Outline

> Iterative Algorithms, Assertions and Proofs of Correctness
> Binary Search: A Case Study

Define Problem: Binary Search

> PreConditions
CKey 25
\square Sorted List

3	5	6	13	18	21	21	25	36	43	49	51	53	60	72	74	83	88	91	95

> PostConditions
\square Find key in list (if there).

3	5	6	13	18	21	21	25	36	43	49	51	53	60	72	74	83	88	91	95

Define Loop Invariant

> Maintain a sublist.
$>$ If the key is contained in the original list, then the key is contained in the sublist.
key 25

3	5	6	13	18	21	21	25	36	43	49	51	53	60	72	74	83	88	91	95

Define Step

$>$ Cut sublist in half.
$>$ Determine which half the key would be in.
$>$ Keep that half.

Define Step

$>$ It is faster not to check if the middle element is the key.
$>$ Simply continue.

Make Progress

$>$ The size of the list becomes smaller.

Exit Condition

> If the key is contained in the original list,
then the key is contained in the sublist.
> Sublist contains one element.

- If element = key, return associated entry.
- Otherwise return false.

Running Time

The sublist is of size $n, n / 2, n / 4, n / 8, \ldots, 1$

Each step $O(1)$ time.
Total = O(log n)

Running Time

$>$ Binary search can interact poorly with the memory hierarchy (i.e. caching), because of its random-access nature.
$>$ It is common to abandon binary searching for linear searching as soon as the size of the remaining span falls below a small value such as 8 or 16 or even more in recent computers.

BinarySearch(A[1..n],key)

<precondition»: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location

$$
p=1, q=n
$$

while $q>p$
< loop-invariant>: If key is in A[1..n], then key is in A[p..q]
mid $=\left\lfloor\frac{p+q}{2}\right\rfloor$
if key $\leq A$ [mid]

$$
q=\operatorname{mid}
$$

else

$$
p=m i d+1
$$

end
end
if key $=A[p]$
return(p)
else
return("Key not in list")
end

Simple, right?

$>$ Although the concept is simple, binary search is notoriously easy to get wrong.
$>$ Why is this?

Boundary Conditions

$>$ The basic idea behind binary search is easy to grasp.
$>$ It is then easy to write pseudocode that works for a 'typical' case.
> Unfortunately, it is equally easy to write pseudocode that fails on the boundary conditions.

Boundary Conditions

```
if key \(\leq A[\) mid \(]\)
        \(q=\operatorname{mid}\)
else
    \(p=m i d+1\)
end
```


What condition will break the loop invariant?

Boundary Conditions

Code: key $\geq A[$ mid $] \rightarrow$ select right half
Bug!!

Boundary Conditions

```
if key \leqA[mid]
\[
q=\operatorname{mid}
\]
else
\[
p=\operatorname{mid}+1
\]
end
```

if key < A [mid]
$q=\operatorname{mid}-1$
else
$p=\operatorname{mid}$
end

Not OK!!

Boundary Conditions

$$
\operatorname{mid}=\left\lfloor\frac{p+q}{2}\right\rfloor \quad \text { or } \quad \operatorname{mid}=\left\lceil\frac{p+q}{2}\right\rceil
$$

Shouldn't matter, right? Select mid $=\left\lceil\frac{p+q}{2}\right\rceil$

Boundary Conditions

$$
\begin{aligned}
& \text { if key } \leq A[\mathrm{mid}] \\
& \quad q=\text { mid } \\
& \text { else } \\
& \quad p=\text { mid }+1 \\
& \text { end }
\end{aligned}
$$

Select mid $=\left\lceil\frac{p+q}{2}\right\rceil$

If key \leq mid, then key is in
left half.

Prof. J. Elder

If key > mid, then key is in right half.

Boundary Conditions

$$
\begin{aligned}
& \text { if key } \leq A[\text { mid }] \\
& q=\text { mid } \\
& \text { else } \\
& \quad p=\text { mid }+1 \\
& \text { end }
\end{aligned}
$$

Boundary Conditions

$$
\text { if key } \leq A[\mathrm{mid}]
$$

$$
q=\mathrm{mid}
$$

else

$$
p=\text { mid }+1
$$

end

No progress
toward goal:

- Another bug! $\overbrace{}^{?}$ Loops Forever!

$$
\text { Select mid }=\left\lceil\frac{p+q}{2}\right\rceil
$$

If key \leq mid, \quad If key $>$ mid, then key is in then key is in left half. right half.

Boundary Conditions

mid $=\left\lfloor\frac{p+q}{2}\right\rfloor$	mid $=\left\lceil\frac{p+q}{2}\right\rceil$
if key $\leq A[\mathrm{mid}]$	if key $<A[\mathrm{mid}]$
$q=$ mid	$q=\mathrm{mid}-1$
else	else
$\quad p=$ mid +1	$p=$ mid
end	end

Not OK!!

Getting it Right

> How many possible algorithms?
> How many correct algorithms?
> Probability of guessing correctly?

Alternative Algorithm: Less Efficient but More Clear

```
BinarySearch(A[1..n], key)
<precondition>: A[1..n] is sorted in non-decreasing order
<postcondition>: If key is in A[1..n], algorithm returns its location
p=1,q=n
while q\geqp
    <loop-invariant>: If key is in A[1..n], then key is in A[p..q]
    mid =\\frac{p+q}{2}\rfloor
    if key < A[mid]
        q=mid -1
    else if key > A[mid]
        p=mid +1
    else
        return(mid)
    end
end
return("Key not in list")
```


Assignment 3 Q2: kth Smallest of Union

$>\mathrm{e}=\mathrm{kth}$ SmallestOfUnion(k)
\square e.g., kthSmallestOfUnion(6) $=7$
$>$ Observation: e must be in first k positions of A 1 or A 2 , i.e., $e \in A_{1}[0 \ldots k-1] \cup A_{2}[0 \ldots k-1]$
$>\rightarrow$ Step 1: Truncate A1 and A2 to length k.

A1	1	2	5	7	10	16	18	
	A2	3	4	8	9	11	12	14

Assignment 3 Q2: kth Smallest of Union

$>\mathrm{e}=\mathrm{kth}$ SmallestOfUnion(k)
\square e.g., kthSmallestOfUnion(6) $=7$
> Step 2: Divide and Conquer!
\square Case 1: A1[2] > A2[2]. In what intervals must the kth smallest lie?
\square Case 2: A1[2] < A2[2]. In what intervals must the kth smallest lie?

Assignment 3 Q2: kth Smallest of Union

> More generally: maintain the loop invariant that the kth smallest key is stored in

$$
A_{1}\left[k_{1 l} \ldots k_{1 u}\right] \cup A_{2}\left[k_{2 l} \ldots k_{2 u}\right]
$$

Assignment 3 Q2: kth Smallest of Union

$>$ Now bisect $\mathrm{A}_{1}: \quad k_{1}=\left\lfloor\left(k_{1 l}+k_{1 u}\right) / 2\right\rfloor$ and define $k_{2}=k-k_{1}-1$.
\Rightarrow Note that $k_{1}+k_{2}=k-1$
$>$ Now compare $A_{1}\left[k_{1}\right]$ and $A_{2}\left[k_{2}\right]$.
> What sub-intervals can you safely rule out?
$>$ Now update $k_{1 l}, k_{1 u}, k_{2 l}, k_{2 u}$ accordingly, and iterate!

Assignment 3 Q2: kth Smallest of Union

> To simplify the problem, assume that original input arrays are of the same length.
$>$ Note that $\mathrm{k}<2 \mathrm{n}$, or a RankOutOfRangeException is thrown.

Compare (A1[2], A2[2])

Assignment 3 Q2: kth Smallest of Union

$>$ What if $\mathrm{k}<\mathrm{n}$?
$>$ Then we first truncate both arrays to be of length k .

Assignment 3 Q2: kth Smallest of Union

$>$ What if $\mathrm{k}>\mathrm{n}$?
$>$ Then we first trim the tails of the arrays so they are of length k .

Assignment 3 Q2: kth Smallest of Union

$>$ What if $\mathrm{k}>\mathrm{n}+1$?
$>$ Then we first trim the beginning of both arrays so they are of length $n-(k-n-1)+1=2 n-k+1$.

Assignment 3 Q2: kth Smallest of Union

$>$ Thus at the beginning of the loop, we have the kth smallest element in

$$
A_{1}\left[k_{1 l} \ldots k_{1 u}\right] \cup A_{2}\left[k_{2 l} \ldots k_{2 u}\right]
$$

Assignment 3 Q2: kth Smallest of Union

$>$ Now let $k_{1}=\left\lceil\left(k_{1 l}+k_{1 u}\right) / 2\right\rceil$ and $k_{2}=\left\lfloor\left(k_{2 l}+k_{2 u}\right) / 2\right\rfloor$
$>$ Then we have that $k_{1}+k_{2}=k-1$.
$>$ In the loop we will compare $A_{1}\left[k_{1}\right]$ and $A_{2}\left[k_{2}\right]$, and update, while preserving 3 loop invariants:
$>\quad / / \mathrm{LI} 1: \mathrm{kth}$ smallest is in A1[k11...k1u] or A2[k2I...k2u]
//LI2: $k 1+k 2=k-1$
//LI3: $|\mathrm{n} 1-\mathrm{n} 2|<2$

$A_{2} \mathrm{l}$

Card Trick

Pick a Card

Done

Thanks to J. Edmonds for this example.

Loop Invariant: The selected card is one of these.

Which column?

left

Loop Invariant: The selected card is one of these.

Selected column is placed in the middle

I will rearrange the cards

Relax Loop Invariant: I will remember the same about each column.

Which column?

right

Loop Invariant: The selected card is one of these.

Selected column is placed in the middle

I will rearrange the cards

Which column?

left

Loop Invariant: The selected card is one of these.

Selected column is placed in the middle

Wow!

Ternary Search

> Loop Invariant: selected card in central subset of cards

$$
\begin{aligned}
& \text { Size of subset }=\left\lceil n / 3^{i-1}\right\rceil \\
& \text { where } \\
& n=\text { total number of cards } \\
& i=\text { iteration index }
\end{aligned}
$$

> How many iterations are required to guarantee success?

Outline

> Iterative Algorithms, Assertions and Proofs of Correctness
> Binary Search: A Case Study

Learning Outcomes

> From this lecture, you should be able to:
\square Use the loop invariant method to think about iterative algorithms.
\square Prove that the loop invariant is established.
\square Prove that the loop invariant is maintained in the 'typical' case.
\square Prove that the loop invariant is maintained at all boundary conditions.
\square Prove that progress is made in the 'typical' case
\square Prove that progress is guaranteed even near termination, so that the exit condition is always reached.
\square Prove that the loop invariant, when combined with the exit condition, produces the post-condition.

Trade off efficiency for clear, correct code.

